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A. The simple model

Consider the simple model of Figure la in which water is flowing downward 

in unsaturated sediments at the steady rate w(gm/cm2 sec). For convenience, 

we illustrate only one stratum in an otherwise homogeneous section. As the 

medium is unsaturated, the mass flux is generally divided between a 

contribution from transport in the liquid state, w~, and one from transport in 

the vapor state, w . As the flow passes through the stratum with contrasting
9

capillary properties, we expect that the relative contributions of each phase 

will generally be different. (How different they might be depends upon the 

dynamics of flow which we shall not address.) As we have assumed steady-state 

conditions, however, the total mass flux, w, will be the same in each medium, 

i.e.,

w = wg

= wg

where primes denote conditions in the stratum. To fix ideas, we suppose that 

the contrast in properties between the stratum and the enclosing medium is 

such that a greater proportion of the flow occurs in the liquid state in the 

stratum, i.e., w' > w.. To meet this condition, water vapor must condense 

near the upper boundary of the stratum at the rate w' - w~, and the latent 

heat of vaporization, L per unit mass, must be liberated there. Hence the 

upper surface of the stratum must behave as a heat source of strength Aq(top)

Aq(top) = (w' - w~)L (2a) 

= XwL (2b)
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where A. is the increase in the fraction of mass flux carried by the liquid 

phase when the boundary is crossed, i.e.,

wi " w£
\ = ~  - (2c) 

w v

Similarly as the flow passes through the lower boundary of the stratum 

vaporization must take place at the rate w' - w« resulting in a steady heat 

sink there of strength

Aq(bottom) = -XwL (3)

Suppose the geothermal flux results in a steady input of heat at the rate 

q into the bottom of the stratum (Figure Ib). As this flow crosses into the 

stratum, the sink (equation 3) will reduce its value to q - AwL. When the 

heat emerges at the top of the stratum, it will be augmented by the source 

(equation 2) so that, in the domain above, its value will again be q 

(= q - A,wL + A,wL), (see Figure Ib).

The potential importance of this effect stems from the large magnitude of 

the quantity L, viz.

L * 580 cal/gm (4) 

If we express w in gm/cm2 yr (equivalent to a volume flow rates of liquid 

water in cm/yr), the source strength (2) is

580 \w(gm/cm2 yr) (5a)
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or expressed in heat-flow units (1 HFU = 10 6 cal/cm2 sec)

Aq(HFU) ^ 18 Aw(gm/cm2 yr) (5b) 

The background geothermal gradient in continental regions (including NTS) 

is determined by a regional geothermal flux q of vL-2 HFU. Thus it is seen 

that the source (or sink) associated with condensation (or vaporization) of 

vertical water flux of only 1 gm/cm2 yr (i.e., 1 cm/yr seepage velocity) is a 

full order of magnitude greater than the background heat flow. Consequently, 

the gradient changes associated with such sources and sinks would be an order 

of magnitude greater than the background gradient (see Figure Ic). Thus 

changes from vapor transport to liquid transport for flow rates of only 

1 mm/yr could produce anomalies of 100% in the background geothermal gradient. 

In general, an anomalous negative temperature gradient of the type illustrated 

(in Figure Ic) should be characteristic of strata favoring transporting the 

liquid phase in regions of slow downward unsaturated flow. In regions of slow 

upward flow, the roles of source and sink would be reversed and so would the 

sign of the temperature-gradient anomaly across such strata. If the anomalous 

stratum favored vapor flow (instead of liquid flow), the opposite rules would 

apply (negative gradient anomaly for upflow; positive for downflow). Hence 

the direction (up or down) of very small steady unsaturated flows might be 

determined from a superficial examination of the temperature profile and core. 

The rate of steady flow can be calculated from the magnitude of the gradient 

anomaly and an estimate of A; a lower limit is obtained by setting A = 1. 

It is important to emphasize that we do not know, at present, whether it 

is reasonable to expect appreciable changes in phase composition in steady 

unsaturated flows in bedded tuffs. However, temperature profiles in 

unsaturated sediments at the Nevada Test Site show steady-state gradient 

reversals and other anomalies that might be explained by their effects. The 

applicability of the model to these data is under study.
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B. More general considerations

We consider the steady-state one- t/?_y«%°ajfr. 

dimensional problem of water flowing downward 3

from the surface through unsaturated sediments :̂ vvvi".-:?%-.~j

whose properties vary with depth (z, Figure 2). z
Fig. 2

The total mass-flow rate is a constant w, the sum of contributions from

flow in the vapor state w and flow in the liquid state w0 , each of which area *
functions of depth z. The mass-flow rates are the product of a volume-flow 

rate v and density p. Hence

w = w. + w , independent of z (6a)  *' y
w = p v (6b)

w = p v (6c) 
9 ^ 9

Differentiation of (6) yields the continuity condition:

. 0 rt
TT = ^ + 7T3- = 0 (7) 
dz dz dz

The thermal condition of the sediments is a steady-state resulting from a 

constant temperature on the surface (z = 0), a constant geothermal flux qQ 

from great depth, and internal sources of heat resulting from steady-state 

convection and mechanical conversion by the liquid and vapor components of the 

flow. The energy balance for this condition requires that at any depth

^k f] = 31^ *l + "g V + P 3^g + V

where 0 is temperature, k is thermal conductivity, P is pressure, and e^ and 

e are the internal energies per unit mass of water in the liquid and vapor
%7

phases respectively.
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The term on the left in (8) is the change with depth in conductive heat 

flow; it is balanced by the local rate of accumulation of heat by convection 

(first term on the right) and the rate of heat generation associated with 

reversible volume changes (second term on right). Much of the work of volume 

change can be incorporated into the first term on the right by replacing the 

specific internal energy e by the specific enthalpy h (= e + P/p).

&* & = fc«* \ + wg V ' [vg + v* ] I (9)

We neglect the last term in (9), which is equivalent to assuming that the work 

of volume change takes place at constant pressure. Now using (2), (3), and 

the relation

dh _ d§ 
dz c dz

where c is specific heat at constant pressure, we can express (9) as follows

&[k f ] = [w, c, «  wg cg ] i - (hg - V ** (10) 

We define a mean value, c, of specific heat of the mass flow by

wfl c 0 + w c 
c = **w 3fl (ID

and denote the conductive flux, positive in the direction of heat flow, by

q = kf (12)
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The latent heat of vaporization L is given by

L = h - h (13) 
y

Combining equations (10) through (13) gives a convenient relation between 

conductive heat flux and conditions of water flow

dw  
rln 0 r HH = -I _~ + £ wn (14}dz L dz k wq u^;

The first term on the right shows how, in the steady state, the heat flow 

changes with depth according to the changing phase composition of the mass 

flow. The second term on the right is the familiar convection term associated 

with the transport of thermal capacity.

As the thermal gradient is easier to visualize than the heat flow, it is 

useful to write (14) for the case of uniform thermal conductivity.

Hw  
dE _ . L QW£ cw
dz " k dz~ k '

(15b)

where r = d8/dz denotes thermal gradient. Although (15a) is useful for 

intuitive purposes, the assumption (15b) usually is not justifiable and the 

more general form (14) is needed for calculations. In practice, this poses no 

problem, as the thermal conductivity of the formation is easily determined in 

the laboratory from core or (if porosity is known) from drill cuttings.

C. The relative importance of the terms in equation (14).

To investigate the role of the second term on the right in (14), consider 

a medium composed of horizontal strata, each of which has uniform properties
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in its interior. Within each stratum, we assume for convenience that the 

phase composition of the flow will be constant, in which case the first term 

on the right will vanish, i.e., (14) becomes

£ = «» <«>
Integrating (16) across a stratum of thickness Az yields

q(bottom)
= Q7 ,e u/a;

where "top" and "bottom" refer to the stratum boundaries at which q is 

evaluated and s is a scale length with the sign of w (positive for downward 

flow)

(17b) 
cw

To estimate the expectable range of s we note that the specific heats of 

liquid and vapor are

c£ = 1 cal/gm °C (18a) 

c s 0.45 cal/gm °C (18b)
3

and consequently c (equation 11) is restricted to a relatively narrow range.

w w 
cCcal/gm °C] s -p + 0.45 -3 (19a)

W W

si , wg = 0 (19b) 

s 0.45, w£ = 0 (19c)
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Unsaturated sediments normally have thermal conductivities in the range

k A- 0.003 ± 50% cal/cm sec °C (^1.2 ± 0.6 W m" 1 k" 1 ) (20)

Using (19b) and (20) in (17b) yields an estimate of scale length s- for the 

case where transport is predominantly in the liquid phase

-5  r (21a)n2 yr] v '

Similarly if the flow is predominantly in the vapor phase, the scale length s
*7

is

yr] (21b)

Comparing (21a) and (21b) to (17a), it is seen that for mass flow of constant 

phase composition at rates on the order of 1 gm/cm2 yr (Darcian velocities 

~1 cm/yr) conductive heat flow across a stratum will be uniform unless its 

thickness approaches 1 km; for Darcian liquid flow rates ~1 m/yr the governing 

stratum thickness is -vLO m, for vl mm/yr it is 10 km.

Thus for mass flow rates up to 1 gm/cm2 yr, the temperature may be 

treated by conduction theory (dq/dz =0) in the interior of strata less than a 

few hundred meters thick if the phase composition of the flow is uniform 

within such strata.

We now consider the more general case in which the phase composition of 

flow, and consequently w~, vary across a layer of thickness 6z extending 

downward from Zj to z2 . Using the notation of (17b) in (14) and integrating
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over the layer yields

Z2 Z2 z2 - 
J2 dq = -L JZi dw^ + J iq dz (22a)

x ) - q(z2 ) s L[w (z2 ) - w(Zl )] - q ^ (22b)

where q is the mean value of q in the layer, and the relatively small possible 

variation of s (equations 21) is neglected. The third term will usually be 

negligible if

^ « 1 (23)
^

in which case the variation of heat flow across the layer can be attributed 

entirely to change in phase composition of the flow, i.e.,

[q( 2l ) - q( Zl )] s 18[w£(z2 ) - w£ ( Zl )] , (24)

where q is measured in HFU, and wft is measured in gm/cm2 yr 

According to (24) if the liquid flow rate increases by 0.1 gm/cm2 yr between 

two depths, the heat flow will decrease by 1.8 HFU between those depths. The 

form of the depth-dependence of w« in the interval is immaterial; the special 

case of a discontinuous change in w. (i.e., 6z = 0) is the one discussed 

originally (equations 2 and 3).
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